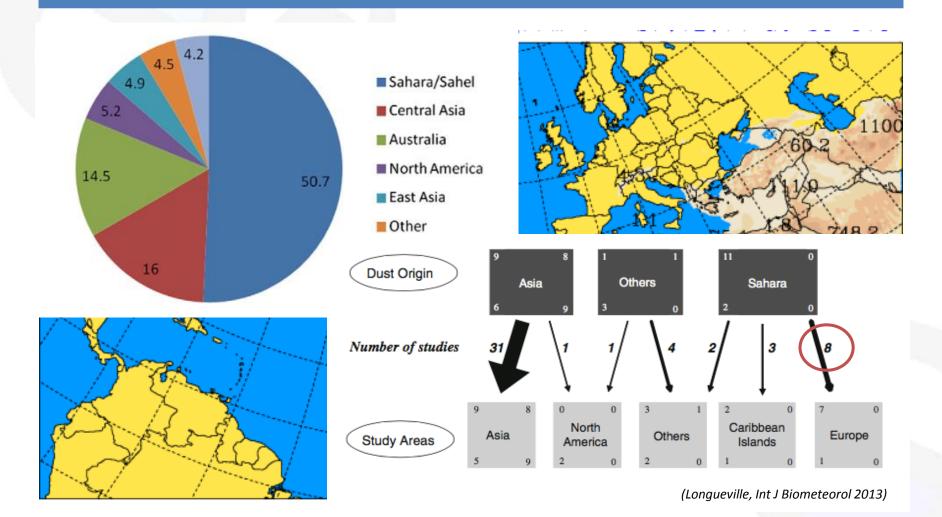
Health effects of African dust: A review

Aurelio Tobías

International Workshop on SAND AND DUST STORM Istanbul, Turkey, 5 October 2016





Thursday, 3 April 2014

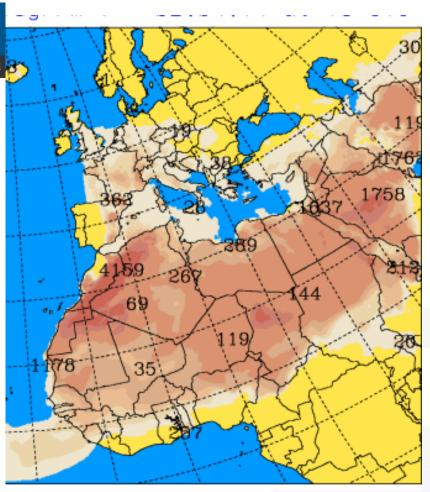
theguardian Winner of the Pulitzer prize 2014

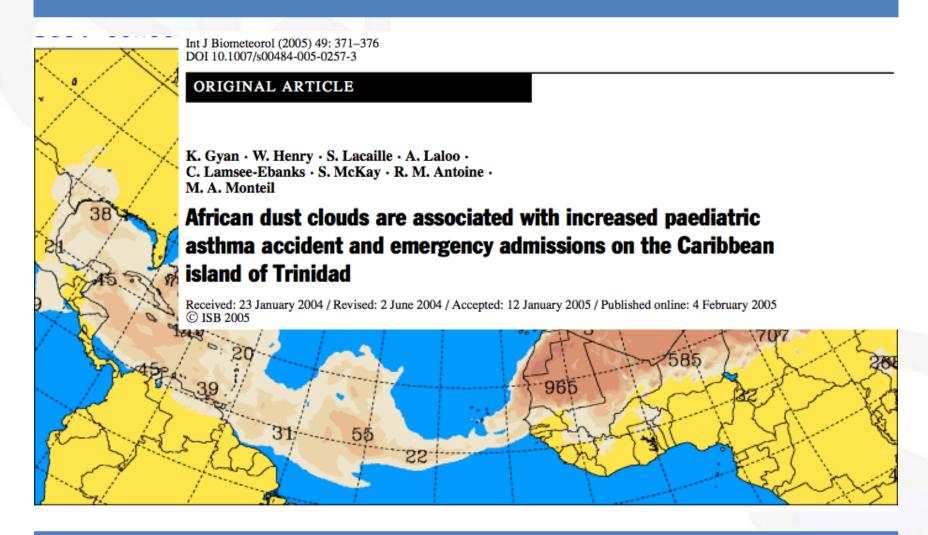
home > environment > pollution

climate change wildlife energy

gy UK

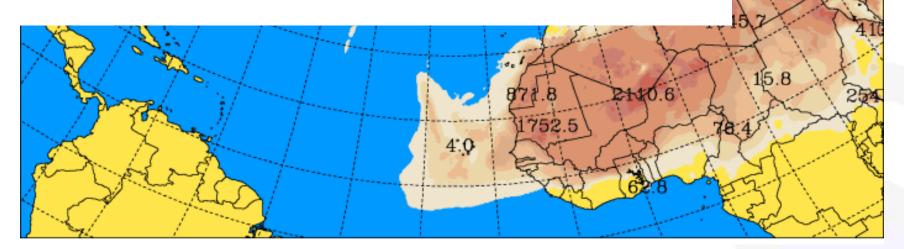
UK electi ≡ all 🔁


Pollution

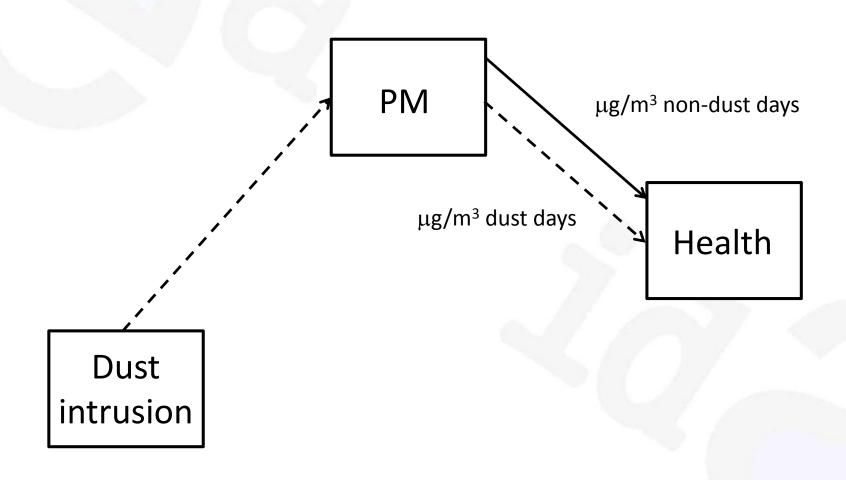

Sahara dust smog: record pollution levels hit London and south England

Warnings to stay indoors and avoid exercise as London and the south of England experience highest pollution levels ever recorded

London blanketed in smog earlier this week. Photograph: Xinhua/Landov/Barcroft Media

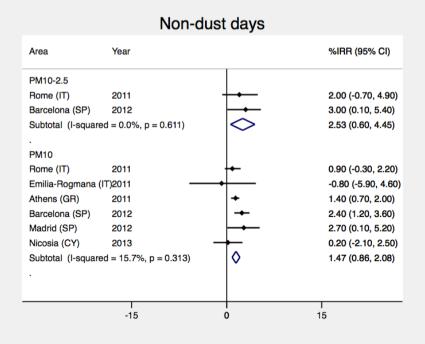


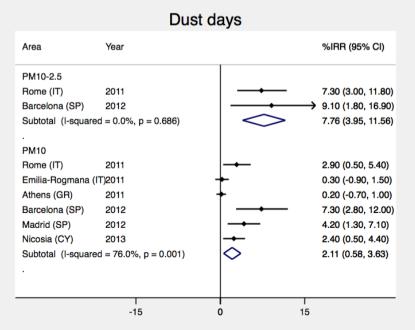
Int J Biometeorol (2013) 57:1-19 DOI 10.1007/s00484-012-0541-y


REVIEW

Desert dust impacts on human health: an alarming worldwide reality and a need for studies in West Africa

Florence de Longueville · Pierre Ozer · Seydou Doumbia · Sabine Henry

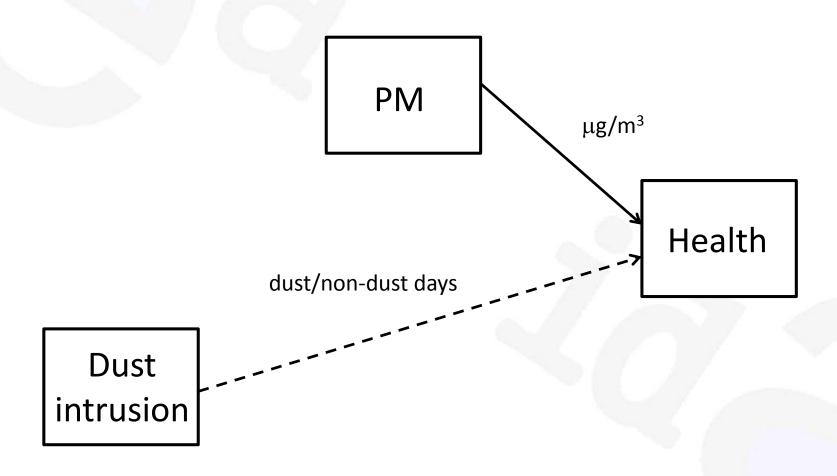

Effect of PM modified by dust intrusions



Short-term effects on mortality

		African dust as effec					
		PM _{10-2.5}	PM ₁₀	PM _{10-2.5}	PM ₁₀		
City (C.)	(Yr. Pub.)	All na	tural	CVD/	Circ.		
Barcelona (SP)	(2008, 2012)	\checkmark		\checkmark	\checkmark		
Madrid (SP)	(2010, 2012)	\checkmark	\checkmark		\checkmark		
Rome (IT)	(2011)	\checkmark	\checkmark	\checkmark	\checkmark		
Emilia-Romagna (IT)	(2011)		×		X		
Athens (GR)	(2011)		X		X		
Nicosia (CY)	(2013)		×		✓		

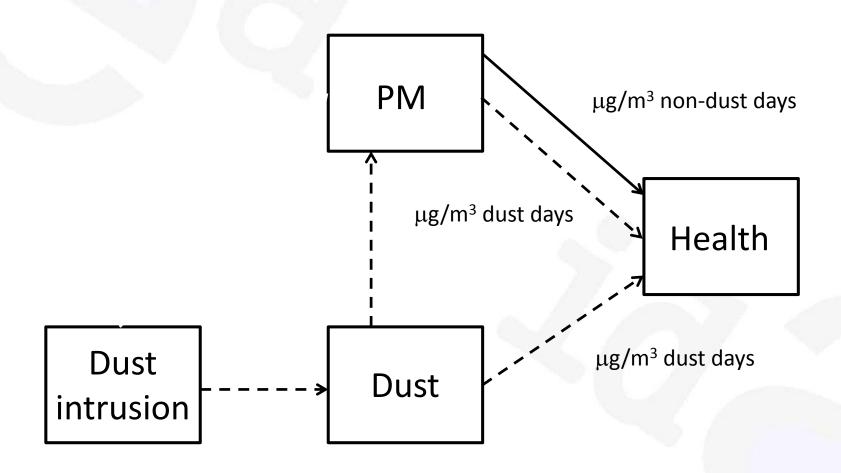
Meta-analysis of published risks of cardiovascular mortality for an increase of $10\mu g/m^3$ of PM during Saharan and non-Saharan dust days in Southern Europe



Short-term effects on mortality

		African dust as effect modiffier of								
		PM _{10-2.5}	PM ₁₀	PM _{10-2.5}	PM ₁₀	PM _{10-2.5}	PM_{10}	PM _{10-2.5}	PM ₁₀	
City (C.)	(Yr. Pub.)	All natural		CVD/Circ. Cerebrovascular Respiratory		atory				
Barcelona (SP)	(2008, 2012)	\checkmark		\checkmark	\checkmark	×		×		
Madrid (SP)	(2010, 2012)	\checkmark	\checkmark		\checkmark				×	
Rome (IT)	(2011)	\checkmark	\checkmark	\checkmark	\checkmark	×	×	X	×	
Emilia-Romagna (IT)	(2011)		×		×				×	
Athens (GR)	(2011)		×		×				×	
Nicosia (CY)	(2013)		×		✓				×	

Effects of PM and dust intrusions


Short-term effects on mortality

			As risk							
		PM _{10-2.5}	PM ₁₀	exposure						
City (C.)	(Yr. Pub.)	All na	tural	CVD/	Circ.	Cerebrov	ascular /	Respiratory		Respiratory
Barcelona (SP)	(2008, 2012)	\checkmark		\checkmark	\checkmark	×		×		
Madrid (SP)	(2010, 2012)	\checkmark	\checkmark		\checkmark				×	
Rome (IT)	(2011)	\checkmark	\checkmark	\checkmark	✓	×	×	×	×	
Emilia-Romagna (IT)	(2011)		×		×				×	\checkmark
Athens (GR)	(2011)		×		×				×	
Nicosia (CY)	(2013)		X		✓				×	

Short-term effects on morbidity

		African dust as effect modiffier of									As risk exposure		
		PM _{10-2.5}	PM ₁₀	PM _{10-2.5}	PM ₁₀	PM _{10-2.5}	PM ₁₀	PM _{10-2.5}	PM ₁₀		Asthma	ì	
City (C.)	(Yr. Pub.)	CVD/	Circ.	Respir	atory	Asthma	a (<14)	COF	PD	Respir.	(<14)	COPD	
Trinidad (Caribbean)	(2005)										✓		
Nicosia (CY)	(2008)									\checkmark			
Trinidad (Caribbean)	(2009)										X		
Athens (GR)	(2011)						\checkmark						
Rome (IT)	(2013)	X	X	\checkmark	X								
Madrid (SP)	(2014)	X	X	\checkmark	\checkmark								
Be'er Sheva (IS)	(2014)								X			\checkmark	
Guadeloupe (Caribbean)	(2014)					\checkmark	\checkmark						
Grenada (Caribbean)	(2015)										\checkmark		

Effects of *local* PM and *natural* dust

Saharan dust as continuous exposure

TABLE. Levels of PM₁₀ and Percentage Increase in Risk of Cardiovascular Mortality 10 μ g/m³ During Non-Saharan Dust Days (Contributing Total PM₁₀ Levels) and Saharan Dust Days (Contributing Local and Saharan Contributions to PM₁₀ Levels)

			Percentiles				Short-term Effects		
	Mean (sd)	Minimum	25	50	75	Maximum	Lag	%IR (95% CI)	
Non-Saharan dust days	(n = 1317)								
PM ₁₀	38.6 (15.7)	7.0	27.0	35.9	47.1	107.6	Lag 1 Lag 2	1.1 (-0.1 to 2.4) 2.8 (1.6 to 4.1) 1.7 (0.5 to 2.9) 0.3 (-0.9 to 1.6)	
Saharan dust days (n =	145)						Lag J	0.5 (0.5 to 1.0)	
Local contributions to PM ₁₀	27.7 (10.7)	0.0	20.6	27.5	34.6	53.0	Lag 1	4.9 (-0.3 to 10.3) 9.7 (4.3 to 15.3) 6.3 (1.1 to 11.8) 7.3 (2.0 to 12.8)	
Saharan contributions to PM ₁₀	16.5 (12.0)	0.0	8.0	13.0	23.0	57.0	Lag 1 Lag 2	3.0 (-1.5 to 7.6) 4.0 (-0.4 to 8.7) 2.2 (-2.2 to 6.8) 3.5 (-1.0 to 8.1)	

(Pérez et al., Epidemiol 2012)

Plausible mechanisms

Transportation

- Dust clouds carry large amounts of microorganisms and biogenic allergens (Griffin 2001)
- Dust could absorbs industrial pollutants through it journey over industrialised areas (Rodríguez et al. 2001)

Toxicity

- Local particles more toxic on dust days due to reactions with gases or condensation of organic compounds on the particles (Pérez et al. 2012)
- Dust episodes associated with a lowering of the MLH enhancing local pollution (Pandolfi et al 2014)

Methodological issues

- Different health outcomes, age groups, particulate matter exposures and lag structures
- Different methods to identify Saharan dust intrusions (Karanasiou et al. 2012)
- Different types of study designs and statistical methods (Longueville et al. 2013)
- Different role of Saharan dust, mainly based on a binary metric not suitable for a continuous exposure

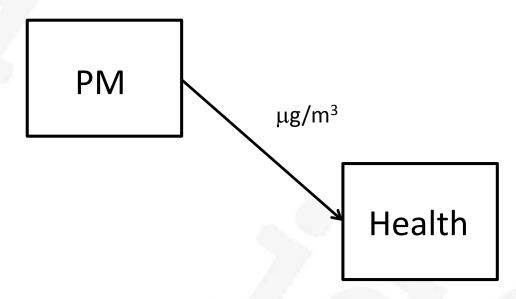
Conclusions

- The body of evidence from affected areas, in Southern Europe and the Caribbean, suggest a potential health effects of Saharan dust
- More studies are needed using an standardized protocol for desert dust detection and quantification, jointly with health data collection
- Epidemiological research in different geographical locations to provide a better understanding of the potential mechanisms of toxicity

Thanks for your attention!

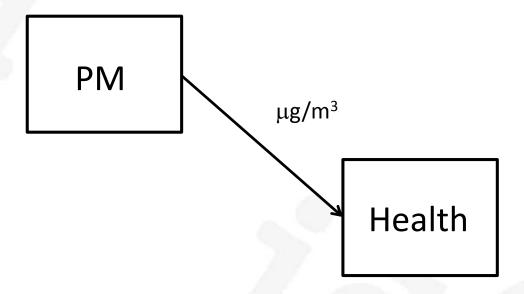
Institute of Environmental Assessment and Water Research

IDAEA – CSIC C/ Jordi Girona 18–26 08034 Barcelona, Spain

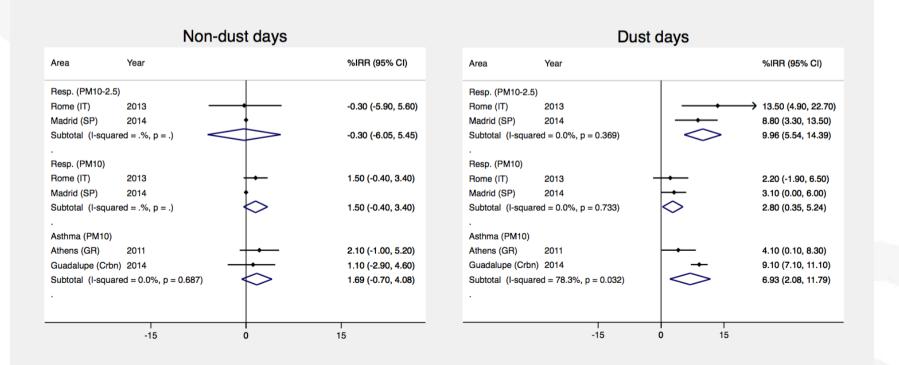

Tel. (+34) 93 400 61 00 Fax (+34) 93 204 59 04

aurelio.tobias@idaea.csic.es http://www.idaea.csic.es/

Project PI08/0354 funded by


Short-term effects of PM

...


Samoli et al. Environ Health Perspect 2013 Satfoggia et al. Environ Health Perspect 2013 Atkinson et al. Thorax 2014 Adar et al. Curr Environ Health Rep 2014 Lu et al. Environ Res 2015

Role of Saharan dust intrusions?

Dust intrusion

Meta-analysis of published risks of hospital admissions for respiratory and child asthma causes, for an increase of $10\mu g/m^3$ of PM during Saharan and non-Saharan dust days

