

Orman ve Su İşler Bakanlığı

Dust plays an important role in weather forecast and climate.

(1) Indirect effect: modification of the cloud droplet concentration and size distribution

(2) Direct effect: change radiation budget by absorbing and scattering solar radiation

Objetives of the Regional Center

➤ Lead the implementation and operation of an integrated system of observation and prediction

- Identify and improve observational and forecast products
- Promote the creation and improvement of observational networks in developing countries.
- Facilitate user access to information

Orman ve Su İşler Bakanlığı

- Create and maintain a website
- Create alternative systems tailored to users
- Build capacity of countries to use the products supplied

Observation Network

- mineral dust forecasting
- early warning system for real-time monitoring,
- validation
- verification of numerical prediction models and data assimilation schemes

<u>The main data sources</u>

- in-situ measurements,
- aerosol optical depth and derived products retrieved from ground-based radiometer measurements and satellite products

Aerosol Optical Depth

important information about

- concentration,
- size distribution,
- variability of aerosols (desert dust, sea salt, haze, and smoke particles) in the atmosphere
- dimensionless number that is related to the amount of aerosol distributed within the vertical column of atmosphere over the observation location,
- aerosol particles in the atmosphere can block sunlight by absorbing or by scattering light,
- AOD is used as a quantitative measure of the extinction of solar radiation by aerosol scattering and absorption
- Heavy dust regions higher than 0.3
- Around deserts above 1.0 and usually below 3.0

Aerosol Optical Depth

- Giovanni website provides a simple way to visualize, analyze, and access Earth science remote sensing data, particularly from satellites, without having to download the data.
- It includes data for aerosols, atmospheric chemistry, atmospheric temperature and moisture, and rainfall. It was developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC).
- <u>giovanni website</u>

Aerosol Optical Depth 2007-2011

- Additional information on the particle size, aerosol phase function and the relative magnitude of aerosol radiances at different wavelengths.
- The Angstrom exponent (AE) is an exponent that expresses the spectral dependence of aerosol optical thickness (τ) with the wavelength of incident light (λ)
- <u>AE relation</u>

$$\tau_{\lambda} = \tau_{\lambda_0} \left(\frac{\lambda}{\lambda_0}\right)^{-\alpha}$$

 α = Angstrom exponent

- useful quantity to evaluate the particle size of atmospheric aerosols or clouds, and the wavelength dependence of the aerosol/cloud optical properties
- inversely related to the average size of the particles in the aerosol.

<u>The smaller the particle size, the larger the Angstrom exponent.</u> <u>Therefore, low AE values indicate strong presence of coarse aerosols</u> <u>relating to the dust events.</u>

global network of SDS-WAS research and operational partners implementing SDS-WAS objectives

- particulate matter concentration
- size distribution
- the air quality standards, such as the European Union 2008/50/EC Directive, set maximum atmospheric concentrations for specific pollutants.
- the EU 24-hour-mean limit value for particles with aerodynamical diameter less than 10 μ m (PM10) is **50 \mug/m³**, with 35 permitted exceedences each year, and the annual-mean limit value is **40 \mug/m³**

Reference method to measure concentrations of particulate matter

the gravimetric or filter-based sampling

T.C.

Orman ve Su İşler Bakanlığı

- concentration values of total suspended particles (TSP), PM10 or PM2.5.
- monitoring mineral dust events,

Orman ve Su İşleı Bakanlığı

• Keep in mind that air quality stations measure the overall concentration of particles, not just dust. Moreover, it is important to consider the station site, since the abundance of anthropogenic particulates close to cities, large industrial plants or motorways can mask the presence of mineral dust.

- The intense signature of the dust transport on Feb 1, 2015 appeared in concentration of particulate matters (PM10) at the ground.
- Daily average values of PM10 were very high up to $\,800~\mu g/m^3\,$ on Feb 1, 2015

Measured PM10 values for several cities.

Dust Event over Eastern Mediterranean on 1 February 2015

MODIS real-time images for 31 January – 2 February 2015

AERONET

AERONET (AErosol Robotic NETwork)

- Federation of ground-based remote sensing aerosol networks.
- Discrimination of aerosol types can be done from the aerosol optical depth and its spectral variations.
- Established by NASA and LOA-PHOTONS (CNRS) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists, and partners.
- The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, microphysical and radiative properties for aerosol research and characterization, validation of satellite retrievals.
- http://aeronet.gsfc.nasa.gov/new_web/data.html

June 2009

) June 2009 – Solar Village, Sau

T.C. Orman ve Su İşleri Bakanlığı

WMO SDS-WAS N.Africa-Middle East-Europe RC Visibility reduced by airborne dust - STATIONS 60°N 50°N 40°N 30°N 20°N ٠ 10°N 50°E 60°E 20°W 10°E 20°E 30°E 40°E 10°W 0°

The map shows cases of visibility reduction by sand or dust to less than 5 km reported in **METAR** or **SYNOP** bulletins. More than 1,500 stations are checked every 6 hours. Brownish circles indicate stations where '**sand**' or '**dust**' has been explicitly reported

- Visibility data included in meteorological observations can be used as an alternative way to monitor dust events.
- Visibility is mainly affected by the presence of aerosol and water in the atmosphere. Therefore, the use of visibility data has to be complemented with information on present weather to discard those cases where visibility is reduced by the presence of hydrometeors (fog, rain, etc.).

(http://www.meted.ucar.edu)

LIDAR (LIght Detection And Ranging)

- Radar system using ultraviolet, visible or near-infrared light
- The aerosol lidar systems estimate vertical profiles of particulate from the backscatter profiles.
- Comparison of backscatter at different wavelengths provides some indication of <u>particle size</u>.
- If polarized light is used, the non-spherical character of particles can be determined: since dust particles are usually less spherical than other aerosol types, the method allows distinction between mineral dust and other pollutants.

- Device that uses a laser or other light sources for remote sensing of the atmosphere.
- Ceilometers were primarily used in aviation meteorology for detecting <u>cloud layers</u> and determining <u>their base height</u>.
- Ceilometers can also provide vertical profiles of aerosol backscattering ---- an important source of data for dust monitoring, dust model evaluation and eventually for data assimilation.

satellites. Both satellites orbit the Earth from pole to pole, seeing most of the globe every day.

Onboard Terra, MODIS sees the Earth during the morning, while Aqua MODIS orbits the Earth in the afternoon. MODIS performs measurements in the solar to thermal infrared spectrum region in 36 channels between 0.41 and 14.2µm with high spatial resolution

GEO satellites Products from SEVIRI

EUMETSAT 4 July 2010 12:00 UTC

T.C.

Orman ve Su İşler Bakanlığı

EUMETSAT RGB-dust

UKMO dust AOD 550 nm

(qualitative)

(quantitative)

Orman ve Su İşler Bakanlığı

• The SEVIRI instrument onboard the MSG satellites allows generation of RGB products that offer a <u>qualitative</u> detection of dust clouds with a good spatial and time resolution and an excellent and permanent coverage of the SDS-WAS RC geographical domain.

Research domain (http://maps.ngdc.noaa.gov/viewers/wcs-client/)

Average annual (a.) AOD and (b.) AE

Sand and Dust Observations and Observation Network

T.C.

Orman ve Su İşleri Bakanlığı

Average monhtly (a.)AOD and (b.)AE

REPUBLIC OF TURKEY The Ministry of Forestry and Water Affairs Turkish State Meteorological Service

Thank you for your attention ©

KEEP CALM PRESENTATION IS OVER ANY QUESTIONS?

May 30, 2016 - Ankara